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The usual mathematical model of intermodulation distortion takes the first few terms of the  Maclaurin series 
expansion of the transfer function,

Vout= V0+ k1Vin + k2(Vin )2 + k3(Vin)3,

assumes an input signal to the DUT of the form

Vin = El COS(ω lt) + E2 COS(ω 2t),

expands the input signal applied to the transfer function, and after application of trig identities and 
rearrangement of terms, develops the following output function:

Vout = V0 + 1/2 k2(E1
2 + E2

2 )

+ (k1E1 + 3/4 k3El
3 + 3/2 k3E1E2
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A variant of the above formula was given in “Don’t guess the spurious level of an amplifier.  The intercept 
method gives the exact values with the aid of a simple nomograph,” by F. McVay, Electronic Design 3, 
February 1, 1967, 70 – 73. 



But when signals enter a passive or active device at both the input and the output of the device, such as for an 
amplifier in each leg of a signal generator two tone IMD test setup, the single variable Maclaurin series transfer 
function model no longer applies because the transfer function is a function of two variables, namely the input 
and the output.   This  is  also  the case  for  transfer  functions  with two inputs  which are not  independent  of 
frequency, such as wide spaced two tone IMD where a filter follows the combiner.  In such cases the transfer 
function must be regarded as a Taylor series of two variables 
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+ c31Vl
2 V2 + c32V1
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3 + ...

and the two applied tones 
V1 = E1 COS(ω 1t) and V2 = E2 COS(ω 2t)

must be substituted for the independent variables V1 and  V2 in the Taylor series to develop a correct model for 
the general two variable case.
 

After the usual expansion, application of trig identities, and collection of terms, the following output function is 
obtained:  
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As can be seen from the expansion above, for the general two variable case IMD products occur at the 
same frequencies as for the single variable case.  However, the relationships between and among some 
of the amplitudes of the two variable case are not necessarily the same as for the one variable case.  For 
example, the amplitudes of the 3f1 and 3f2 two variable products need not be equal when E1 and E2 are 



equal, while they are equal for the single variable case.  And for example, the amplitudes of the 2f2 +/- 
f1 two variable products need not be equal to the amplitudes of the 2f1 +/- f2 two variable products, 
while they are equal for the single variable case.

With a little algebra similar to that in the box 
at right the following can be derived.

y = 2x ¯ IIP(f1 + f2) + G

y = 2x – IIP(f1 ¯ f2) + G

y = 3x ¯ 2IIP3(2f1 ± f2) + G

y = 3x ¯ 2IIP3(2f1 ± f2) + G

where G is the gain of the DUT, x is the input 
power  of  the  two  (equal)  tones),  y  is  the 
distortion  output  power,  IIP  denotes  input 
intercept  points,  and  the  frequencies  of  the 
tones are as indicated.


